The SECQ, Linear Regularity, and the Strong CHIP for an Infinite System of Closed Convex Sets in Normed Linear Spaces
نویسندگان
چکیده
We consider a (finite or infinite) family of closed convex sets with nonempty intersection in a normed space. A property relating their epigraphs with their intersection’s epigraph is studied, and its relations to other constraint qualifications (such as the linear regularity, the strong CHIP, and Jameson’s (G)-property) are established. With suitable continuity assumption we show how this property can be ensured from the corresponding property of some of its finite subfamilies.
منابع مشابه
The SECQ Linear Regularity and the Strong CHIP for In nite System of Closed Convex Sets in Normed Linear Spaces
We consider a nite or in nite family of closed convex sets with nonempty intersection in a normed space A property relating their epigraphs with their intersection s epigraph is studied and its relations to other constraint quali cations such as the linear regularity the strong CHIP and Jameson s G property are estab lished With suitable continuity assumption we show how this property can be en...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملStrong CHIP for Infinite System of Closed Convex Sets in Normed Linear Spaces
For a general (possibly infinite) system of closed convex sets in a normed linear space we provide several sufficient conditions for ensuring the strong conical hull intersection property. One set of sufficient conditions is given in terms of the finite subsystems while the other sets are in terms of the relaxed interior-point conditions together with appropriate continuity of the associated se...
متن کاملGRADUAL NORMED LINEAR SPACE
In this paper, the gradual real numbers are considered and the notion of the gradual normed linear space is given. Also some topological properties of such spaces are studied, and it is shown that the gradual normed linear space is a locally convex space, in classical sense. So the results in locally convex spaces can be translated in gradual normed linear spaces. Finally, we give an examp...
متن کاملExistence Results of best Proximity Pairs for a Certain Class of Noncyclic Mappings in Nonreflexive Banach Spaces Polynomials
Introduction Let be a nonempty subset of a normed linear space . A self-mapping is said to be nonexpansive provided that for all . In 1965, Browder showed that every nonexpansive self-mapping defined on a nonempty, bounded, closed and convex subset of a uniformly convex Banach space , has a fixed point. In the same year, Kirk generalized this existence result by using a geometric notion of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 18 شماره
صفحات -
تاریخ انتشار 2007